Short-Term Climate Variability and Atmospheric Teleconnections from Satellite-Observed Outgoing Longwave Radiation. Part II: Lagged Correlations

1983 ◽  
Vol 40 (12) ◽  
pp. 2751-2767 ◽  
Author(s):  
Ka-Ming Lau ◽  
Paul H. Chan
2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Hong-Chun Wu ◽  
Ivan N. Tikhonov

Satellite data of thermal images revealed the existence of thermal fields, connected with big linear structures and systems of crust faults. The measuring height of outgoing longwave radiation is located to the range of jet stream. This work describes a possible link between strong earthquakes and jet streams in two regions. The front or tail ends of jet groups maintain their position for 6 or more hours in the vicinity of epicenters of strong (<em>M</em>&gt;6.0) earthquakes in 2006-2010. The probability of observing a stationary jet stream behavior is estimated in 93.6% of the cases on one sixhour map and in 26.7% of cases - on two adjacent maps. The median of distribution of distances between epicenters and the relevant positions of jet stream corresponds to 36.5 km. Estimates of cumulative probability of realization of prediction were 24.2% for 10 days, 48.4% for 20 days, 66.1% for 30 days, 87.1% for 40 days, 93.5% for 50 days and 100% during 70 days. The observed precursory effects are of considerable interest for possible use for real short-term prediction of earthquakes.


2010 ◽  
Vol 11 (2) ◽  
pp. 370-387 ◽  
Author(s):  
Rajib Maity ◽  
S. S. Kashid

Abstract This paper investigates the use of large-scale circulation patterns (El Niño–Southern Oscillation and the equatorial Indian Ocean Oscillation), local outgoing longwave radiation (OLR), and previous streamflow information for short-term (weekly) basin-scale streamflow forecasting. To model the complex relationship between these inputs and basin-scale streamflow, an artificial intelligence approach—genetic programming (GP)—has been employed. Research findings of this study indicate that the use of large-scale atmospheric circulation information and streamflow at previous time steps, along with OLR as a local meteorological input, potentially improves the performance of weekly basin-scale streamflow prediction. The genetic programming approach is found to capture the complex relationship between the weekly streamflow and various inputs. Different input variable combinations were explored to come up with the best one. The observed and predicted streamflows were found to correspond well with each other with a coefficient of determination of 0.653 (correlation coefficient r = 0.808), which may appear attractive for such a complex system.


2014 ◽  
Vol 27 (2) ◽  
pp. 941-957 ◽  
Author(s):  
Guillaume Gastineau ◽  
Brian J. Soden ◽  
Darren L. Jackson ◽  
Chris W. O’Dell

Abstract The changes of the outgoing longwave radiation (OLR) in clear-sky conditions have been calculated using High Resolution Infrared Radiation Sounder (HIRS) observations from 1979 to 2004. After applying corrections for satellite orbital drift and intercalibration of the HIRS/2 data from the NOAA satellites, the OLR is calculated from a multivariate regression over the tropical ocean region. The clear-sky OLR retrievals compare well with the observed top-of-atmosphere radiation measurements, although the precision and stability uncertainties are larger. While the tropical ocean surface temperature has risen by roughly 0.2 K from 1982 to 2004, the reconstructed OLR remains stable over the ocean. Consequently, there is an increase in the clear-sky greenhouse effect (GHE) of 0.80 W m−2 decade−1. This trend is shown to be larger than the uncertainty in the stability of the HIRS retrievals. The observations are compared with two phase 3 of the Coupled Model Intercomparison Project model ensembles: one ensemble includes both natural and anthropogenic forcings [the twentieth-century (20C) ensemble] and the other ensemble only contains natural climate variability (the control ensemble). The OLR trend in the 20C simulations tends to be more negative than observed, although a majority is found to be within the observational uncertainty. Conversely, the response of the clear-sky OLR to SST is shown to be very similar in observations and models. Therefore, the trend differences between the 20C simulations and observations are likely because of internal climate variability or uncertainties in the external forcings. The observed increase in GHE is shown to be inconsistent with the control ensemble, indicating that anthropogenic forcings are required to reproduce the observed changes in GHE.


2021 ◽  
Vol 13 (11) ◽  
pp. 2201
Author(s):  
Hanlin Ye ◽  
Huadong Guo ◽  
Guang Liu ◽  
Jinsong Ping ◽  
Lu Zhang ◽  
...  

Moon-based Earth observations have attracted significant attention across many large-scale phenomena. As the only natural satellite of the Earth, and having a stable lunar surface as well as a particular orbit, Moon-based Earth observations allow the Earth to be viewed as a single point. Furthermore, in contrast with artificial satellites, the varied inclination of Moon-based observations can improve angular samplings of specific locations on Earth. However, the potential for estimating the global outgoing longwave radiation (OLR) from the Earth with such a platform has not yet been fully explored. To evaluate the possibility of calculating OLR using specific Earth observation geometry, we constructed a model to estimate Moon-based OLR measurements and investigated the potential of a Moon-based platform to acquire the necessary data to estimate global mean OLR. The primary method of our study is the discretization of the observational scope into various elements and the consequent integration of the OLR of all elements. Our results indicate that a Moon-based platform is suitable for global sampling related to the calculation of global mean OLR. By separating the geometric and anisotropic factors from the measurement calculations, we ensured that measured values include the effects of the Moon-based Earth observation geometry and the anisotropy of the scenes in the observational scope. Although our results indicate that higher measured values can be achieved if the platform is located near the center of the lunar disk, a maximum difference between locations of approximately 9 × 10−4 W m−2 indicates that the effect of location is too small to remarkably improve observation performance of the platform. In conclusion, our analysis demonstrates that a Moon-based platform has the potential to provide continuous, adequate, and long-term data for estimating global mean OLR.


2021 ◽  
Vol 58 (1) ◽  
pp. 132-150
Author(s):  
Cody J Schmidt ◽  
Bomi K Lee ◽  
Sara McLaughlin Mitchell

Many scholars examine the relationship between climate variability and intrastate conflict onset. While empirical findings in this literature are mixed, we know less about how climate changes increase the risks for conflicts between countries. This article studies climate variability using the issue approach to world politics. We examine whether climate variability influences the onset and militarization of interstate diplomatic conflicts and whether these effects are similar across issues that involve sovereignty claims for land (territory) or water (maritime, river). We focus on two theoretical mechanisms: scarcity ( abundance) and uncertainty. We measure these concepts empirically through climate deviation (e.g. droughts/floods, heat waves/cold spells) and climate volatility (greater short-term variance in precipitation/temperature). Analyses of issue claims in the Western Hemisphere and Europe (1901–2001) show that greater deviations and volatility in climate conditions increase risks for new diplomatic conflicts and militarization of ongoing issues and that climate change acts as a trigger for revisionist states.


Sign in / Sign up

Export Citation Format

Share Document